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ABSTRACT

Industrial manufacturing is based on a variety
of energy sources, e.g. electricity, oil, and gas.
Electricity appears to be particularly relevant to
operate most types of industrial production equipment
in an environmentally friendly manner. Aside from
production machines, intralogistics equipment that
performs material handling and supplies processes
is a further consumer of electricity in an industrial
environment. The integration of electricity-intensive
intralogistics equipment has, however, hardly
been considered in the research on energy-aware
production management. With this paper, we present
an optimization model that synchronizes intralogistics
charging decisions with a production schedule and
the availability of renewable electricity in a power
grid. Following the Industrie 4.0-paradigm, we use
decentralized decision-making within an agent-based
platform that coordinates different types of production
and intralogistics equipment. We integrate a forecast
signal for the availability of renewable energy into
this platform to support an environmentally oriented
decision process. In a simulation study that is based on
real-world data, we analyze the role of intralogistics
handling processes and charging operations with
respect to a company’s job shop environment and
electricity consumption profile. In this simulation,
we compare static charging policies in contrast to the
proposed optimization model and decentral decision-
making under various demand scenarios. The presented
approach is shown to be capable of increasing local
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electricity consumption in times of peak generation of
renewable energy, which contributes to CO; reductions
in industrial manufacturing.
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1 INTRODUCTION

In 2021, Germany emitted a total of 675 million tons
of COy [1]. Industrial manufacturing contributed
significantly to this emission and electricity appears
to be particularly relevant to operate the majority of
production equipment, as the industry sector accounts
for a large share of Germany’s overall electricity
consumption [2]. Increasing electricity generation
from renewable energy sources is considered the
central approach to reduce CO; emissions. At present,
however, the potential is not being fully exploited
as insufficient grid capacity cannot handle peaks
in renewable energy generation, which results in
feed-in management and losses of renewable energy
generation [3]. More precisely, a loss of 5,818 GWh of
renewable energy by feed-in management actions was
caused in Germany in the year 2021 [4]. Assuming a
CO; emission factor of 420 g per kWh, corresponding
to the standard electricity mix in Germany in 2021,
potential CO7 savings of approximately 2.44 million
tons CO7 were lost due to this [5].

Besides costly and time-intensive expansions
of grid infrastructure, energy-aware research, in
particular event-driven demand response in the form
of adaptable local industrial electricity consumption,
offers an opportunity to counteract renewable energy
generation losses. While energy-aware research greatly
focuses on production planning and specifically
machine scheduling, little attention has been put on
closely linked and mandatory electricity intensive
intralogistics supply processes, like, for example,
material handling or production factor supply. Aside
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from machine scheduling, intralogistics can have a
considerable impact on a company’s overall electricity
consumption. Therefore, it seems appropriate to widen
the focus of energy-aware research to also account
for intralogistics processes in order to exploit further
potentials of CO> emission reduction.

For this purpose, the paper at hand adopts a decentral
decision-making methodology to orchestrate machine
scheduling and intralogistics charging decisions taking
into account the availability of sustainable energy in
the course of time. We introduce an optimization
model with the objective of synchronizing charging
decisions of intralogistics equipment to the availability
of renewable energy. More precisely, the considered
company receives a forecast signal that indicates
whether feed-in management is necessary for upcoming
periods. This forecast corresponds to the so-called
Netzampel [6], which provides information about the
availability of excessive renewable energy at a regional
level. Excessive renewable energy is indicated by a red
color Netzampel in the municipality and, thus, feed-in
management is necessary (external signal red, ESR).
For a local company, this forecast signal indicates that
energy-intensive operations could be conducted to
consume renewable energy that would otherwise be
lost. A green Netzampel forecast (external signal green,
ESG) indicates, that feed-in management is not needed.
Following this approach means that an opportunity
is given to synchronize industrial manufacturing
processes with renewable energy generation and to
contribute to industrial CO; emission reduction. We
benchmark our intralogistics charging optimization
model against well-known static charging policies.

The remainder of this paper is organized as follows.
Section 2 reviews the relevant energy-aware literature.
Section 3 puts emphasis on the decentral decision-
making process under consideration of the availability
of renewable energy. Subsequent computational
experiments in Section 4 analyze and evaluate the
performance of the presented approach. Section 5
concludes the paper.

2 LITERATURE REVIEW

Energy awareness in industrial manufacturing decision-
making is addressed in numerous recent publications
and several literature reviews, see for example
Gahm et al. [7]. Energy awareness in manufacturing
environments means incorporating energy price
variations or events like special weather conditions
to align energy consumption with manufacturing
processes. In this line of thought, demand-side
management encourages companies to adopt energy
consumption to a targeted demand response event. A
distinction can be made between prevalent price-driven
and rare event-driven demand response approaches
(Biel and Glock [8]). The analysis of publications
reveals a focus on price-driven demand response and

emphasizes a need for research that accentuates event-
driven demand response to which this paper contributes
through the conducted investigation.

As an example of price-driven demand response,
Busse and Rieck [9] investigate a flow shop scheduling
problem integrating mid-term electricity price
forecasts to minimize energy costs under a real-time
pricing (RTP) scheme. Lu et al. [10] propose a RTP
prediction approach based on a neural network to
minimize electricity costs while satisfying production
requirements of a serial production line. Based on
manufacturing systems with cyber-physical systems,
Yun et al. [11] contribute a real-time demand response
strategy to reduce electricity costs. In consideration
of the large number of energy-aware decision support
models, we refer to the following literature reviews
for a detailed insight: While Renna and Materi [12]
provide an overview with a special highlight on studies
that consider renewable energy source integration in
manufacturing systems, Bénsch et al. [13] study a wide
range of relevant energy-aware scheduling publications
in depth. The publication by Bénsch et al. [13] points out
that demand response literature predominantly focuses
on machine scheduling and only a few publications
additionally integrate the effect of manufacturing
supply processes, which we discuss hereafter.

From the large body of energy-aware machine
scheduling research, Bénsch et al. [13] report streams
of recent developments and identify future research
potentials. Apart from on-site generation environments,
dynamics, rescheduling, and usage of multiple
forms of energy, the authors mention a need for the
integration of intralogistics transportation processes.
From an integrated environmental viewpoint, it seems
reasonable to furthermore account for energy-intensive
intralogistics together with production-related job
scheduling. Regarding transportation processes, Liu et
al. [14] consider a flexible job shop scheduling problem
and integrate crane operations to transport workpieces
on the shop floor while minimizing both, the total cost of
consumed energy and the schedule makespan. Hemmati
Far et al. [15] emphasize a flexible manufacturing cell
setting with industrial robots, where automated guided
vehicles (AGVs) are used to transport material between
storage and manufacturing areas. The proposed model
minimizes overall production and transport cost under
time-of-use (TOU) electricity prices to account for
the energy consumption of moving AGVs within the
manufacturing environment as well as job tardiness.
Expanding the focus, Wang [16] extends the company
boundary and integrates finished product distribution in
the sense of vehicle routing in combination with single
machine scheduling to minimize carbon emissions from
the production equipment’s energy consumption and
the fuel consumption of delivery trucks. Hahn-Woernle
and Giinthner [17] investigate the effect of power-load
management on the throughput of material-handling
systems in automated warchouses and demonstrate that
power limits are capable to avoid energy consumption
peaks, while slightly reducing the throughput.
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Relating to equipment charging decisions, a demand
response method for an integrated manufacturing
scheduling and material handling charging system
is proposed by Yun et al. [18]. Under a time-of-use
electricity tariff, the approach minimizes the electricity
costs of production schedules. The authors integrate a
price-driven demand response approach and integrate
material handling equipment charging decisions.
Compared with this, Scholz and Meisel [19] consider
an event-driven demand response setting and propose
a platform to coordinate machine scheduling and
intralogistics charging decisions. The paper at hand
expands the approach of Scholz and Meisel [19] by
putting a special focus on charging decisions of energy-
intensive intralogistics equipment, where we align these
decisions to machine schedules under various static
charge policies and an optimization-driven approach.

3 DECENTRAL AGENT-BASED
INTRALOGISTICS CHARGING

First, in Subsection 3.1, the underlying manufacturing
environment is introduced. Then, Subsection 3.2
introduces the intralogistics charging decision
optimization model. Conclusively, Subsection 3.3
presents the algorithm that specifies the considered
decentral decision-making and provides explanations
for the static charging policy procedures.

3.1 Problem description

In what follows, we consider a manufacturing
environment that can be divided into two general
segments. A schematic framework of this environment
is depicted in Figure 1. The outer segment includes
intralogistics devices (ile) like, for example, equipment
for material handling or production factor supply.
The inner segment refers to production scheduling

- - - - - - - — -y

where machines (m) have to execute manufacturing
jobs. While machines call for job scheduling
decisions, intralogistics face charging decisions. The
proposed approach can be applied to various kinds
of manufacturing environments that involve energy-
intensive intralogistics processes like material handling
and machine operations such as laser cutting, melting,
welding, pressing, or others.

The intralogistics environment, depicted in orange
in the figure, consists of k& intralogistics equipment
depicted as circles. As intralogistics processes, we
consider an electrified forklift fleet performing material
handling or air compressors providing compressed air
as a production factor. Accordingly, we distinguish
between intralogistics equipment providing production
factors to machines, symbolized by solid arrows, and
intralogistics equipment performing material handling
between the machines on the shop floor, symbolized by
dotted arrows. We put emphasis on the intralogistics
charging decisions that need to provide sufficient
resources to the production scheduling environment
and ensure an adequate inventory (like battery energy
level in the case of forklifts or compressed air in the
case of compressors) by making charging decisions.
A detailed view into the intralogistics environment
decision-making is provided in Section 3.2.

The production environment, depicted in blue in
Figure 1, comprises job scheduling decisions for
machines. In what follows, we consider the individual
decisions within the production scheduling segment as
given and the corresponding decision-making process
as a black box. For the sake of completeness and to
make the paper self-contained, we shortly introduce
the production scheduling setting. The production
scheduling environment consists of n» machines,
depicted as squares in the figure, that process a set of
jobs J. Each job j € J consists of a set of operations
o € Oj that have to be processed in a specified order,
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Fig. I: Schematic manufacturing environment framework.
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and, thus, job-specific precedence relations exist where
each job exhibits an individual machine routing. Each
operation o can be processed in one of three different
processing modes, |S|= 3. Job processing time p, s is
measured in periods and varies for the three processing
modes s € S. The electricity consumption of modes is
reflected by rates ¢, 5. There is a trade-off between
processing time and electricity consumption such that
choosing a processing mode with a higher processing
speed leads to an electricity consumption increase.
Furthermore, jobs exhibit release dates 7; that refer to
the earliest period in time at which processing can be
started.

The majority of research considers production
scheduling and inventory-based charging decisions
as independent problems. The literature review in
Section 2 revealed that recent publications bring
these two research streams together and formulate
integrated approaches, which seems reasonable
as both exert a decisive influence on a company’s
electricity consumption. In what follows, we, therefore,
propose an agent-based decentralized decision-
making platform that acts as an interface between
the production scheduling and intralogistics decision-
making environments. In order to focus on the impact
of intralogistics decision-making, we consider the
detailed process within the production scheduling
segment as a black box and production decisions as
given. To get a detailed view of intralogistics decision-
making, we propose a mathematical model formulation
that constitutes an extension of the model provided
by Scholz and Meisel [19]. In order to orchestrate
intralogistics processes in coordination with production
scheduling decisions, we put emphasis on decentralized
decision-making. To this end, the next Section 3.2
describes the intralogistics charging decision-making
that is triggered through the decentral decision-making
procedure. Section 3.3 then represents the decentral
decision-making procedure, where individual agents
hold the intralogistics and production scheduling
decision rules.

3.2  Optimization model for intralogistics
charging decisions

In this section, we consider a single intralogistics
equipment (i/e) that assists machines in their production
operations. The intralogistics inventory charging needs
to be aligned with the machines’ production operations
to avoid disruptions of the production processes. For
this purpose, we present an optimization model that
covers intralogistics charging decisions with respect
to demands that result from machine scheduling
decisions. We denote by 7 the set of upcoming periods
for which charging decisions have to be made. This
set can be derived from the periods the machines
have scheduled their jobs so far. The considered
intralogistics equipment exhibits an initial inventory
invg and a maximum inventory capacity invygx
where recharging can take place in different charging
modes S. The availability of different modes allows
to trade-off the charge speed versus the electricity
that is consumed per period of charging. Accordingly,
they differ in power consumption gy and charge rate
cs. The charge rate expresses the electricity charged
to the battery for a forklift whereas it expresses the
added amount of compressed air for an air compressor
or similar inventories for other types of equipment.
The jobs scheduled on the machines constitute the
intralogistics equipment period-based demands de;
for periods ¢ € T that consume the intralogistics
equipment’s inventory. From the job scheduling
decisions of all machines being active in a period, we
can derive a total demand de; faced by the considered
intralogistics equipment in period . Whether or not
the intralogistics equipment faces such a demand in
period ¢ is indicated by the binary parameter ¢;, which
is equal to 1 if de; > 0 and 0 otherwise. According
to technical realities, especially in view of forklift
batteries, a certain self-discharge amount sdc per
period is taken into account. Furthermore, intralogistics
equipment can be distinguished by whether or not they
are capable of simultaneous charging and inventory
consumption (binary parameter scc = 1) or not (scc = 0).
The charging decision for the intralogistics equipment
is then modeled through the binary decision variable
zs.1, which is equal to 1 if the equipment charges in
mode s € S in period ¢ € 7. The dependent continuous
variable inv; keeps track of the resulting inventory.
Table 1 summarizes the notation for this model. The
optimization model for the charging decisions of the
intralogistics equipment is then as follows.
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Table 1: Notation for intralogistics charging decisions.

Sets

T Set of periods
S Set of charging modes

Parameters

invg Initial inventory [1, Wh, or similar dimensions]

Vg Maximum inventory capacity [1, Wh, or similar dimensions]

de;  Demand faced in period ¢t € T [l, Wh, or similar dimensions]

by Equal to 1 if there is demand in period 7 (i.e. de; > 0), 0 otherwise

qs Power consumed per period of charging in mode s [kW per period]

re; Dichotomous parameter, with re, = —1 if forecast indicates feed-in management (ESR) in period ¢,

otherwise re, = 1 (ESG)

Cs Inventory charged per period in charging mode s [1, Wh, or similar dimensions]

sdc  Self discharge per period [%]

scc  Equal to 1 if the equipment is capable to charge and consume inventory at the same time, 0 otherwise

Decision variables

Zs,t
inv,

Binary variable, 1 if equipment charges in mode s in period ¢, O otherwise
Dependent continuous variable stating the equipment’s inventory at the end of period # [1, Wh, or similar dimensions]

min — Z Z Zs,t " qs - Te; M

seSteT

Zzs,z <1 teT )

seS
invy =inv;_1 —de; + ZZSJ e — 1= ZZW - sdc teT 3)

seS seS
D zsa+ ¢ < 1+sce teT @)
seS

0 < invy <invyax teT ®)

The objective function (1) represents the intralogistics
inventory charging synchronization with the
dichotomous renewable energy forecast parameter
rey, with re; = —1 if the forecast indicates feed-in
management (ESR) in period ¢ and re; = 1 if no feed-
in management is necessary (ESG). Through this, the
objective maximizes the electricity consumption to
charge intralogistics inventory in times of excessive
renewable energy generation (feed-in management,
ESR) and minimizes electricity consumption in periods
without feed-in management (ESG). Feasibility of the
charging decisions is ensured by Constraints (2) to (6).
Constraints (2) assure that at most one charge mode
can be chosen for a period. Constraints (3) compute the
inventory inv; at the end of period ¢ taking into account

zs.0 € {0, 1} seES,teT 6)

the inventory inv;—; at the end of the previous period,
the demand de; in the current period, and the new
charge z,; - ¢s. Furthermore, according to the last term
in these constraints, the inventory is reduced from the
self-discharge sdc in periods where the equipment is not
charging. Constraints (4) satisfy that an intralogistics
equipment that is capable of simultaneous charging
and inventory consumption (resp. demand fulfillment)
(scc = 1), can do both in a single period whereas other
equipment either charges or consumes inventory in
a period (scc = 0). Constraints (5) ensure the non-
negativity of intralogistics inventory and respects
the maximum capacity. Constraints (6) guarantee the
binary character of variables zy, ;.
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3.3  Decentral decision-making procedure

The intralogistics charging optimization model
introduced in Section 3.2 is embedded in an agent-
based platform to coordinate the decentral decision-
making of production machines and intralogistics
equipment. The decision-making is then performed on
a server infrastructure by embedded smart agents that
hold the individual decision rules for the production
scheduling and intralogistics environment. Based on
the definition of an intelligent agent of [20], a smart
agent is understood as a computer program that
executes autonomously triggered rules and processes.
For the subsequent experiments, we simulate the
behavior of such a platform through the procedure
that is sketched in Algorithm 1. In this algorithm, the
multi-agent system is implemented as a priority queue
of requests placed by the equipment. Requests represent
an equipment’s production inquiry, e.g. in order to
schedule jobs or to recharge intralogistics inventory.
These requests incrementally build a production and
charging schedule in a rolling horizon manner. While
a real-time approach requires continuous data input,
constant data processing, and continuous data output
with low latency, the presented approach behaves like
a near real-time approach, as data handling is linked
to the manufacturing equipment request times. This
coupling reduces the amount of necessary data handling
compared to a real-time approach and still delivers real-
time alike solutions.

Contrasting the introduced intralogistics charging
decision optimization model of Section 3.2, static
charging policies are a common instrument for making
charging decisions in practice. In the following, we take
into consideration four well-known and established
inventory review policies. In general, we can distinguish
these static policies into periodic charging procedures
(t, g-policy, ¢, S-policy) and continuous procedures
(s, g-policy, s, S-policy). Regarding periodic charging
procedures, charging takes place at given and fix time
intervals ¢ where either a fixed amount ¢ is charged or
it is charged until the order-up-to level S is reached. On
the contrary, continuous charging procedures initiate
charging when the state of charge (inventory) falls
below a defined threshold, the order point s. Then, either
a fixed amount ¢ is charged or charging takes place
until the order-up-to level S is reached. Consequently,
the proposed decentral decision-making platform is
capable to account for four static charging policies and
to apply the optimization model to charge intralogistics
equipment.

In more detail, lines 1 to 7 of Algorithm 1 initiate
essential sets, lists, the priority queue, and initial request
periods. The processing of the priority queue starts at
line 8. It first identifies the next request according to
the period at which requests occur, see line 9. The agent
then receives the current load profile /p; and feed-in
management forecast re; in the considered period # (line
10). The current load profile Ip; reflects the company’s
already fixed electricity demand in period ¢ that results

from those operations that were planned in earlier
decision-making processes. The feed-in management
forecast re; indicates upcoming excessive renewable
energy generation. For a better understanding of the
parameters /p; and re; a brief example is as follows:

With [p; = 1,500 and re; = —1, the parameters
represent an electricity demand of 1,500 kWh and
the dichotomous parameter re; indicates feed-in
management (ESR) in period ¢ = 1. Afterwards, it
is checked whether the trigger event e belongs to a
machine or intralogistics equipment.

In case a machine requests to schedule new
production jobs (line 11), intralogistics inventories
need to meet the upcoming machine demands de;.
Otherwise, the production scheduling request is
postponed to meanwhile recharge the intralogistics
equipment, see lines 13 — 16. In case of sufficient
intralogistics inventory, the machine is capable to
proceed with production scheduling, see lines 18 — 20.
The newly scheduled jobs constitute a new demand for
intralogistics inventory, which is reflected in the update
of de; in line 21. Referring to the case where charge
policies (s, g) or (s, S) are implemented for intralogistics
charging, a constant inventory verification is essential
to ensure that the inventory lays above the order point
s. If the inventory falls below the defined order point,
lines 22 — 26 define the next intralogistics request to
initiate an immediate charging process. Lines 27 — 30
complete the production machine request procedure.
Through this, when a job’s final operation is executed,
the job is moved from the list of unprocessed jobs to
the list of processed jobs.

In case the triggered event refers to an intralogistics
equipment’s request for charging (line 31), the agent
receives the relevant demand information de; (line 32).
In case of a charge policy with constant charge rate ¢
(t ¢, s, q), the intralogistics inventory is charged with
quantity ¢, in case the maximum inventory capacity
invyqx allows for this (lines 33 — 35). Similarly, when
a charge policy with a given order-up-to level S (¢, S;
s, ) is used by the company, the intralogistics inventory
is charged with a quantity A that brings the inventory
up to level S, see lines 36 — 38. In case of a periodic
charging procedure (¢, ¢; ¢, 5), the next request will be
triggered at the time of the current period plus charge
interval 7, see lines 39 — 40. If the charging decisions
are made through the optimization model (1)—(6), line
42 solves the model, line 43 updates the inventory
according to the model’s charging decisions, and line 44
schedules the next event for the period in time when the
equipment runs idle for the next time. Having handled
the request of the current event e, the load profile lp; is
updated to capture the electricity demand of the taken
decisions (line 45). Finally, the follow-up request is
added to the priority queue (line 46), for example, to
trigger an intralogistics smart agent again as soon as a
charging decision is necessary.
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Algorithm 1 Decentral decision-making procedure.

> set of equipment (production machines and intralogistics equipment)

> list of unprocessed jobs
> list of processed jobs
> initialize priority queue

> assign initial request period

> place request in priority queue

> priority queue procedure

> select next trigger event from priority queue

> request equipment type ‘'machine’

> postpone machine request

> define next intralogistics equipment request
> insert ile into priority queue

> see Scholz and Meisel [19]
> next request when machine runs idle

> derive intralogistics equipment demand from production decision

> define next request
> insert intralogistics equipment into priority queue

> remove job from list of unprocessed jobs
> add job to list of processed jobs
> request equipment type 'intralogistics’

> charge with quantity q

> charge with quantity A
> next request in t periods
> solve intralogistics optimization model

> charge with quantity zZs ¢ - Cs
> next request when intralogistics equipment runs idle

1: E— MUILE
2: U=1]
3: P=[]
4: q <« priority queue()
5: fore € Edo
6: e.request «— initial request period
7: | q.put(e)
8: while ¢ # 0 do
9: e «— q.get()
10: smart agent retrieves relevant information Ip,, re;
11: if e refers to a production machine then
12: compare required capacity with intralogistics equipment inventory
13: if insufficient intralogistics equipment inventory then
14: e.request «— next request period
15: ile.request «— next request period
16: q.put(ile)
17: else
18: call machine scheduling model as black box
19: e.request «— next request period
20: transmit production decisions to machine
21: update de,
22: for ile € ILE do
23: if charge policy = s, ¢ OR if charge policy = s, S then
24 if ile.inventory < s then
25: L ile.request < next request period
26: | q.put(ile)
27: forj € U do
28: if job j’s final operation was executed then
29: U.remove(j)
30: || P.append(j)
31: if e refers to an intralogistics equipment then
32: smart agent retrieves relevant information de;
33: if charge policy = t, g OR if charge policy = s, g then
34: L if e.inventory + q < e.inv,,,, then
35: | e.inventory « e.inventory + q
36: if charge policy = t, S OR if charge policy = s, S then
37: L 4 =S — e.inventory
38: e.inventory « e.inventory + A
39: if charge policy = t, g OR if charge policy = t, S then
40: | e.request «— next request period
41: if charge policy = optimization model then
42: solve model (1)—(6)
43: e.inventory « e.inventory + zs; - Cs
44: | e.request «— next request period
45: update Ip,
46: q.put(e)

> put next request in priority queue

4 COMPUTATIONAL EXPERIMENTS

In the following, Subsection 4.1 introduces the
computational study setup, while Subsection 4.2
describes the charge policy interval parameterization.
Based on that, Subsection 4.3 contrasts the static
charging policies to the optimization model approach.
Subsection 4.4 concludes the computational
experiments by considering the impact of different
intralogistics demand lengths.

4.1 Computational study setup
Our computational study consists of several experiments
that parameterize the static charge policies, compare
them to the optimization-driven charging decision-
making, and analyze the performance of the approach
with respect to variations in intralogistics demand.
The experiments are inspired by a real-world
manufacturing company in the metalworking industry
from the federal state of Schleswig-Holstein, Germany.
The company’s manufacturing system consists of a job
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Table 2: Intralogistics data.

Input data

Compressor

Forklift

Maximum inventory inv,,y

Charge rate per period cg

Charging electricity consumption g
Self discharge amount sdc
Simultaneous charging/consumption scc
Initial inventory invy

Order point s

Order-up-to level S

Intralogistics demand de;

769/588/476 [1]
45,040/41,029/36,929 [W]

500-2,000 [1]

10,000 [1] 36,000 [Wh]
969/923/877 [Wh]

6,048/5,760/5,472 [W]

0.0 [%] 0.2 [%o]
1 0
10,000 [1] 36,000 [Wh]
2,000 [1] 7,200 [Wh]
8,000 [1] 28,800 [Wh]

1,400 — 2,925 [Wh]

shop production environment with five machines that
operate in batch production. Job processing times are
derived from this environment. As the paper at hand
considers the production scheduling environment as a
black box, we do not describe its structure in further
detail. The intralogistics devices of the company assist
the machines in their production operations. The
devices comprise two electric forklifts for material
transportation between the machines and one air
compressor providing compressed air as a production
factor to the machines. Relevant in this context is that
the intralogistics equipment has to fulfill the demands
that arise from the production scheduling decisions.
Table 2 shows relevant data of these intralogistics
devices.

The inventories of the compressor are measured
in liters (I) of compressed air while the inventory
of the electric forklifts is measured in Watt-hours
(Wh). The general parameters such as the maximum
inventory invy,,, of the compressor and the forklifts
are taken from the considered company and from the
industrial standardization norm DIN EN 16796. All
intralogistics equipment exhibits three charging modes
|S|=3 with different charge rates c; and electricity
consumption rates gy for mode s € S. According to
technical realities, the battery of a forklift charges at
a rate ¢s of approximately 64 % of the corresponding
electricity consumption rate ¢;. Besides that, the
forklift battery’s self-discharge sdc is assumed to be
0.2 % per period whereas the compressor does not face
such a discharging (sdc = 0.0 %). Furthermore, the air
compressor can charge and fulfill production demand
simultaneously (scc = 1), whereas the forklift can either
charge or serve demands in a period (scc = 0).

We assume that the initial inventory invg of both
types of equipment is identical to the maximum
inventory. For the static charge policies, we consider
an order point s that corresponds to 20 % of the
maximum intralogistics inventory and an order-up-
to level S equaling 80 % of the maximum inventory.
Individual demand rates de; of the forklifts and the air
compressor vary in the ranges mentioned in Table 2
and correspond to the underlying real-world production
data. Even though the conducted simulation study is

following the outlined manufacturing environment
from practice, the proposed model formulation is not
limited to these consumers and is applicable to a wide
range of inventory-based equipment types.

When conducting the computational experiments,
we consider a rolling time horizon of 64 periods and
an overall simulation time of 640 periods. A single
period corresponds to 15 minutes, according to which
the planning time horizon covers two days and the
total simulated time of operations equals four weeks
with one eight-hour shift per day. The forecast of the
availability of excessive renewable energy is derived
from Schleswig-Holstein’s feed-in management actions
in 2021. According to this data, approximately 66 %
of the periods face feed-in management actions. All
data for the computational experiments are available
at the repository [https:/www.scm.bwl.uni-kiel.de/
de/forschung/research-data]. All computations are
conducted on an Intel Core i7 with a 3.6 GHz CPU
and 32 GB memory. For solving the optimization
model, we use the MIP solver CPLEX 12.9.0. The
corresponding computation time per instance of the
model is approximately 30 seconds, which is considered
sufficiently small and, therefore, not further analyzed
in the following. The decentral decision-making
environment is implemented in Python 3.7 using the
libraries queue, pandas, numpy, and doopl.factory.

4.2 Charge policy interval parameterization

In what follows, we will emphasize the mentioned
periodic charging procedures introduced in Section
3.3 with a special focus on parameterizing the charge
interval 7. The order point s, an order-up-to level S, and
charge amount ¢ are important parameters as well but
are assumed to be given due to (technical) restrictions
of the intralogistics equipment. In contrast, the charge
interval 7 is clearly within the company’s decision-
making authority and exerts a decisive influence on
the production scheduling segment, as the machines
are reliant on sufficient intralogistics inventory to
maintain production. Figures 2 and 3 demonstrate the
charge interval influence. They illustrate the production
scheduling job processing rate (right ordinate), which is
the percentage of jobs that can be processed within the
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Electricity consumption [kWh]

Electricity consumption [kWh]

simulated time horizon, and the intralogistics electricity
consumption (left ordinate) for varied values of the

charge interval ¢.

In order to define an appropriate charge interval ¢
for the charge policies (¢, ¢) and (¢, S), Figures 2 and
3 represent 22 different charge intervals within the
range of 8 to 640 periods. It can be clearly seen that
an increasing charge interval ¢ leads to a decreasing
job processing rate and a decreasing intralogistics
electricity consumption. We observe that small-scale
charge intervals of up to # = 32 for the (¢, g)-policy and
up to ¢ = 96 for the (¢, S)-policy achieve the maximum
possible job processing rate of 93 %. This rate cannot
be exceeded in the considered setting as jobs being
released shortly before the end of the simulation time
cannot be completed (end-of-horizon effect). In contrast,
increasing charge intervals ¢ lead to a decreasing job
processing rate due to insufficient inventory of the
intralogistics equipment. Regarding the extreme case
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where the charge interval is equal to the simulation
time of 640 periods and, hence, only a single charging

takes place during the simulation, the job processing

rates drop to as little as 20 %.

The total electricity consumption (sum of ESR
and ESG) for the charge interval ¢ = 8 constitutes the
maximum consumption rate. For higher values of ¢, the
total electricity consumption decreases, as increasing
time spans between two charge processes result in an
overall reduction of the number of charge operations.
Thereby, charge intervals within the range of # = 8 to
t = 32 achieve at least 82 % of charging within ESR
periods. The total electricity consumption is identical
for the charge intervals within the range of #= 352 up to
t= 640, which is due to the fact that only a single charge
takes place in all these settings. Merely the allocation
to periods with necessary feed-in management (ESR-
periods) and to periods without feed-in management
(ESG-periods) changes slightly. Differences in the job
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Fig. 4: Comparison of static charge policies and optimization-driven charging.

processing rate for the charge interval range ¢ = 352 to
t = 640 and the slight increase for # = 288 can be traced
back to variations in the jobs that are selected by the
machines due to postponements that are required when
charging the intralogistics devices.

Based on these results, the charge interval is set to
t = 32 for the subsequent computational experiments,
which ensures sufficient intralogistics inventory to
obtain the maximum possible machine job processing
rate when applying a static charging policy.

4.3  Static intralogistics charging policy
compared to charging optimization model
In this section, we will emphasize the comparison of
the introduced charging policies from Section 4.2 with
the intralogistics charging decision optimization model
from Section 3.2.

Figure 4 contrasts the intralogistics charging
electricity consumption and job processing rate
for each of the four static charge policies and the
optimization model. All charging approaches allow for
a machine job processing rate of 93 %, which means
that the production scheduling segment is capable

to process an identical job amount, regardless of the
chosen charging policy. It becomes apparent that all
static charging policies additionally reveal lower total
electricity consumption compared to the optimization
model. Consequently, only the optimization anticipates
excessive renewable electricity generation and gives the
company’s decision maker the opportunity to reduce
the loss of renewable electricity generation by fully
charging intralogistics devices in ESR-periods. From
comparing the optimization model’s charging decisions
to the most electricity-intensive static charging (¢, S)-
policy, it is possible to make use of additional 326 kWh
during ESR-periods, which would otherwise be lost due
to feed-in management.

In more detail, the (s, g)-policy comes along
with a minimum total electricity consumption
of approximately 711 kWh. This is followed by
the (s, S)- and (¢, ¢)-policies, which show a total
intralogistics charging consumption of 731 kWh and
821 kWh, respectively. Only the (¢, S)-policy reveals
a significantly higher total electricity consumption of
about 917 kWh. This difference can be traced back to
the periodic intralogistics charging up to the order-up-
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Fig. 5: Charging policy specific CO2 emissions.
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to level S, when applying a (¢, S)-policy. The (¢, ¢)-policy
for instance also recharges periodically but charges a
constant amount g, which corresponds to 50 % of the
intralogistics maximum inventory and is only applied
when the upper inventory limit is not exceeded by this.
Similar statements hold for the remaining policies.
Even though the (s, ¢)- and (s, S)-policy both initiate
intralogistics charging when the inventory falls below
the order point s, they marginally differ in the total
electricity consumption. The slightly higher electricity
consumption of the (s, §)-policy compared to the (s, ¢)-
policy is due to the fact that the order-up-to level S
corresponds to 80 % of the intralogistics maximum
inventory whereas the charge amount ¢ equals 50 % of
the intralogistics maximum inventory.

It should be noted that all static charging policies
involve electricity consumption in periods with feed-
in management (ESR-periods) and without feed-in
management (ESG-periods) and only the optimization
model entirely shifts intralogistics charging decisions
solely to feed-in management periods (ESR-periods).
The (s, S)-policy causes the maximum electricity
consumption in ESG-periods with 160.88 kWh,
followed by the (¢, ¢)-policy with 146.13 kWh. While
the (¢, .5)-policy induces 144.33 kWh the (s, g)-policy
exhibits a minimum of 103.84 kWh electricity
consumption in ESG-periods. For the obtained solutions
in Figure 4, we quantify the resulting total CO;
emissions (see Figure 5). We do this by multiplying
the electricity consumption in ESG-periods by a CO»
emission factor of 366 g per kWh, which corresponds
to the standard electricity mix in Germany in 2020 [5].
The electricity consumption in ESR-periods correlates
with 0 g per kWh as this electricity originates from
excessive renewable electricity generation and would
be lost due to feed-in management if not consumed
instantly. Consequently, a charging policy with low
ESG-period electricity consumption comes along with
low CO7 emissions. In light of this, the (s, g)-policy
comes along with the lowest CO; emissions of 38
kg among the static charging policies. The (¢, ¢)-and
(¢, S)-policy exhibit almost identical CO> emissions
of around 53 kg, whereas the (s, S)-policy causes the
highest CO» emissions of all static charging policies
with around 59 kg. Contrasting the static charging
policies, the optimization model completely avoids CO»
emissions. The CO; quantification reveals that applying
the proposed intralogistics charging optimization
model instead of a static charging policy opens up an
opportunity for substantial CO; emission reduction in
the simulated time horizon. In addition to the mentioned
CO; emission reduction, a potential cost saving arises
from trading emission allowances.

4.4  Variation of intralogistics demands

While the computations in the previous section
compared the five different charging options with one
another, we will subsequently examine the impact of
different intralogistics demand lengths. By varying the

length over which parameter de; is applied, we simulate
changes in the demand for the intralogistics fulfillment.
These changes in the intralogistics demand can either
result from changes in machine processing or variations
in the intralogistics demand fulfillment. In any case,
different demand lengths exert influence with regard to
the intralogistics property of simultaneous charging and
consumption (scc). A minimal example could involve
de3 = dey = des = 100, an intralogistics equipment
with no simultaneous charging and consumption (scc
= ()) being capable to recharge inventory at the earliest
in t = 6 and constituting a potential bottleneck for
machine processing. On the contrary, an intralogistics
equipment that is capable of charging and consuming
simultaneously (scc = 1) can recharge in periods 3 to
5 while fulfilling the demand de3 = dey = des = 100,
which would not result in a production bottleneck.
As a consequence, the variation of intralogistics
demand lengths might demonstrate potential adverse
interactions between the intralogistics environment
with the production environment.

Tables 3 to 8 summarize the impact of demand
length variations on a set of key performance indicators
(KPIs). The tables represent the charging policy impact
on the KPIs that are reported in the table rows and
demonstrate a row-based KPI data relation in the sense
of a heat map. Here, the dark green color depicts the
best possible KPI value among all charging policies
and demand length settings, whereas the dark red
color represents the weakest performance. Note that
high ESR electricity consumption rates but low ESG
rates are desirable in order to counteract excessive
renewable electricity generation. Apart from the
already introduced performance measures ESR, ESG
and job processing rate, we additionally account
for four other KPIs. We here introduce relative ESR
usage as the percentage of intralogistics charging
decisions during ESR periods. Three further KPIs
measure insufficiencies of intralogistics inventory
and the consecutive effects for machine scheduling.
The machine postponement KPI refers to lines 12 to
16 of Algorithm 1 and reports how often machine
scheduling needs to be postponed to a later point
in time due to insufficient intralogistics inventory.
In this line of thought, the compressor delay and
forklift delay specify, which insufficient intralogistics
inventory caused the machine postponement. The
reported KPIs exert practical relevance with regard to
production and energy-related goals. The job processing
rate in combination with the underlying machine
postponement, compressor delay as well as forklift
delay is of particular business relevance, whereas
ESR, ESG, and the relative ESR usage focus on the
company’s energy profile. As an upper bound, for the
setting with five machines and a simulation time of 640
periods a maximum possible machine postponement
of 5 - 640 = 3,200 could be observed in case that each
machine request is postponed in each period. We
further distinguish settings where the forklift that has
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the highest inventory is selected for fulfilling a demand
(Tables 3-5) and where one forklift is used consistently
until it has insufficient capacity at which point the
demands are assigned to the second forklift while the
first one is recharging, and so on (Tables 6-8).

Table 3 reports the KPIs for the default demand
length of one period, which corresponds to the results
depicted in Figure 4 in Section 4.3. The table reveals
that all charging policies allow for a job processing
rate of 93 % whereby only the (s, ¢)- and (s, §)-policy
come along with a bit of machine postponement.
This postponement is due to insufficient compressor
inventory but does not reduce the achievable job
processing rate. The forklift inventory is sufficient in
this demand length setting for all charging policies.
Using these results as a reference for comparison, Table
4 represents the results under a demand length of two
periods. With respect to the job processing rate, only
the (¢, S)-policy and the optimization model are capable
of realizing the highest possible performance whereas
all other static charging policies lead to a clear drop
in performance. Especially the (s, g)-policy and the
(s, S)-policy show very high machine postponement
values such that, eventually, a large share of the jobs
cannot be processed at all. The KPI compressor delay
reveals that insufficient compressor inventory is the

predominant reason for this. It should be noted that the
(s, S)-policy additionally exhibits a comparably high
forklift delay. When comparing the optimization model
results for the one and two period demand lengths, we
observe a higher overall electricity consumption with
increasing demand length but the model still satisfies all
of this through renewable energy that would otherwise
be lost (see row ESR). Under a demand length of three
periods, Table 5 reveals that the job processing rate
further decreases, now for all charging policies. Still,
the optimization model reveals the lowest machine
postponement and a consistent usage of ESR-electricity.

In contrast to the results in Tables 3 to 5 where
material handling is executed by the forklift with the
highest current inventory level, Tables 6 to 8 show
the results for a setting where material handling is
executed by only one forklift before this one has
insufficient capacity and is replaced by the second
forklift while it charges. We observe that the general
findings do not change from this alternative forklift
deployment strategy. Except for marginal differences
in ESR- and ESG-period electricity consumption, the
consistent forklift selection provides similar results as a
selection of forklifts according to the highest inventory
for demands of one period length, see Tables 3 and
6. Table 7 shows that consistent forklift selection

Table 3: Charging policy comparison with one period demand length
and forklift selection by highest inventory.

(5,5 )-policy Optimization model

1,098.44

160.88

Job processing rate [%]
Machine postponement
Compressor delay
Forklift delay

(t,9)-policy  (1,5)-policy (s,q )-policy
ESR [kWh] 674.48 772.37
ESG [kWh] 146.13 144.33 103.84
Relative ESR usage [%] 82.00 84.00 85.00

Table 4: Charging policy comparison with two periods demand length
and forklift selection by highest inventory.

(1,9 )-policy
ESR [kWh]

(t,8)-policy

(s,q )-policy
696.43

(s,8)-policy Optimization model

ESG [kWh] 255.72 124.17 175.28
Relative ESR usage [%] 82.00 85.00 80.00
Job processing rate [%] 73.00 47.00 47.00
Machine postponement 183.00 584.00 463.00
Compressor delay 183.00 581.00 368.00
Forklift delay 3.00 95.00

Table 5: Charging policy comparison with three periods demand length
and forklift selection by highest inventory.

(1,9 )-policy
ESR [kWh] 1,227.86
ESG [kWh]
Relative ESR usage [%]

Job processing rate [%]

(,S)-policy
1,528.02

(5,4 )-policy

(s,5)-policy Optimization model

Machine postponement

Compressor delay
Forklift delay

368.00

540.00
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is capable of entirely avoiding insufficient forklift
inventory (forklift delay = 0 for all charging policies)
without any change in the job processing rate compared
to Table 4. It should be noted that the forklift selection
mechanism may increase the compressor delay as
changes in the machine scheduling decisions due to
better forklift inventory utilization are accompanied
by further compressor demands. This is observed here
for charging policy (s, ¢) and may be at the expense of
the battery’s state of health.

Comparing the results for a demand length of three
periods in Tables 5 and 8, we observe that the consistent
forklift selection completely eliminates forklift delays
under the (s, g)-policy and drastically reduces them
under the (s, S)-policy. However, only the (s, §)-policy
benefits from this in terms of a higher job processing
rate, which increase from 33 % to 40 %. Even though the
forklift delays under the (s, ¢)- policy can be completely
eliminated, the remaining compressor delays prevent a
higher job processing rate. This is due to the fact that
both compressor and forklift inventory are insufficient
for a multitude of machine requests and the reduction of
a single bottleneck cannot increase the job processing
rate. Nevertheless, the by far best performance is again
achieved when leaving the charging decisions to the
optimization model.

Of course, machine postponements could be reduced
by a decrease of compressor- and forklift delays.

This could be achieved by a company through new
equipment types that have a higher maximum inventory
capacity (invmax), which would then also require
fewer charging activities. In the case of the forklifts,
this effect could also be achieved by adding further
forklifts to the fleet. In an extreme example, where the
intralogistics equipment’s inventory capacity equals the
overall demand de; for the entire simulation horizon,
no charging would be required at all from which all
charging policies would result in an identical maximum
job processing rate and merely differ in the share of
ESR and ESG electricity consumption.

To summarize, the computational experiments have
demonstrated that charge interval parameterization,
the implementation of a static charging policy or an
intralogistics charging optimization model as well
as the demands for intralogistics inventory exert a
decisive influence on the performance of the production
environment. The intralogistics charging optimization
model is capable to outperform the static charging
policies in all considered settings and with respect
to all analyzed KPIs. Therefore, the computational
experiments reveal that the intralogistics charging
optimization model dominates all static charging
policies, leading to significant performance benefits
for an industrial company.

Table 6: Charging policy comparison with one period demand length and consistent forklift selection.

(%, )-policy

ESR [kWh] 697.52

(%,5)-policy
778.13

(s,8)-policy Optimization model

1,122.24

(5,9 )-policy
627.51

ESG [kWh] 150.45

144.33

111.04 165.20

Relative ESR usage [%]
Job processing rate [%]
Machine postponement
Compressor delay
Forklift delay

82.00

84.00

85.00

Table 7: Charging policy comparison with two periods demand length and consistent forklift selection.

(%, )-policy
1,156.59
262.92
81.00
73.00
183.00

ESR [kWh]
ESG [kWh]

Relative ESR usage [%]
Job processing rate [%]
Machine postponement

(%,5)-policy
1,437.50

82.00

24.00

(s,q)-policy  (s,5)-policy Optimization model
715.15
132.81
84.00
47.00

602.00

194.00
80.00
47.00

Compressor delay 183.00

Forklift delay

24.00

602.00

Table 8: Charging policy comparison with three periods demand length and consistent forklift selection.

(1,9 )-policy
ESR [kWh] 1,204.82
ESG [kWh]
Relative ESR usage [%]

Job processing rate [%]

53.00 60.00

(1,5 )-policy
1,528.02

(s,¢)-policy  (s,5)-policy Optimization model

983.83

218.84

58.31

Machine postponement 421.00 219.00

Compressor delay 421.00 202.00

Forklift delay

87.00 82.00
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5 CONCLUSIONS

The integration of electricity-intensive intralogistics
equipment has rarely been considered in the research
on energy-aware production management. To close
this gap, we have presented an optimization model
that synchronizes intralogistics devices’ charging
decisions with a production schedule and the
availability of renewable electricity in a power grid.
Additionally, a decentral decision-making framework
is proposed to orchestrate intralogistics charging
decisions while taking into account the availability of
sustainable electricity in the course of time. We have
benchmarked our intralogistics charging optimization
model against well-known static charging policies
and have demonstrated that the optimization model is
capable to outperform all static charging policies in
every considered setting. Using the proposed model,
a company can temporarily increase its electricity
consumption in times of generation peaks of renewable
electricity, which prevent a temporary shutdown of
windmills, solar panels, etc. due to feed-in management.
Implementing this decision-making methodology offers
an opportunity to synchronize industrial manufacturing
processes with the availability of renewable electricity,
contributing to a reduction of CO; emissions from
manufacturing processes.

Regarding future research, policy instruments
that provide incentives for companies to adapt their
production and intralogistics-based electricity
consumption to the availability of renewable
electricity generation seem promising. In addition to
the considered charging decisions, the integration of
energy-aware routing decisions for those intralogistics
devices that perform material handling operations may
be of interest too.
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